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Summary of Progress 

During the period June 1, 1987 - November 30, 1987, progress was made in the following 
areas: 

1) Concatenated Codes Using Bandwidth Efficient Trellis Inner Codes 

A paper summarizing our work on the performance of bandwidth efficient trellis inner 
codes using two-dimensional MPSK signal constellations in a NASA concatenated coding 
system has been accepted for publication in the IEEE Transactions on Communications [l]. 
A preliminary version of this paper was included in our previous report (June 1987). The 
final version of the paper was recently re-submitted. Reprints will be sent when they become 
available. 

A second paper summarizing the performance of multi-dimensional trellis coded MPSK 
modulation as inner codes in a concatenated coding system has also been submitted for pub- 
lication to the IEEE Transactions on Communications [2]. Multi-dimensional trellis codes are 
ideally suited for concatenated coding systems since we can match the number of information 
bits per branch on the inner code to the symbol size of the outer code. Thus each incor- 
rectly decoded branch in the inner code results in a single symbol error for the outer code. 
This property of multi-dimensional trellis codes is exactly analogous to the property of unit- 
memory convolutional codes, first discovered by Lee [3], which made them natural choices for 
use in a concatenated system. Our results indicate that the symbol-oriented nature of multi- 
dimensional trellis codes can provide an improvement of up to 1dB in the overall performance 
of a concatenated coding system when these codes replace bit-oriented two-dimensional trellis 
inner codes of similar decoding complexity. A preprint of our paper is included as Appendix 
A of this report. 

Our work on concatenated coding using bandwidth efficient trellis codes was conducted 
by Dr. Robert H. Deng, a former post-doctoral research associate supported by the Grant. 

2) Bounds on the Minimum Free Euclidean Distance of Bandwidth Efficient Trellis Codes 

A paper summarizing our work on lower bounds on the minimum free Euclidean distance 
of bandwidth efficient trellis codes has been accepted for publication in the IEEE Transactions 
on Information Theory [4]. A preliminary version of this paper was included in our previous 
report (June 1987). The final version of the paper was recently re-submitted. Reprints will 
be sent when they become available. 

A weakness of the bound presented in the above paper is that it is not tight at short 
constraint lengths, the most useful range for practical codes. We are currently working on 
a new bound which is much tighter at short constraint lengths. This bound can be used to 
predict the achievable free distance for practical constraint lengths and signal constellations. 
Code searches can then be conducted using the most promising signal constellations. A 
summary of our work on this new bound is included as Appendix B of this report [5]. A 
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full length paper is being prepared for submission to the IEEE Transactions on Information 
Theory. 

Our work on minimum distance bounds for bandwidth efficient trellis codes is being con- 
ducted by Mr. Marc Rouanne, a Ph.D. student supported by the Grant. 

3) Performance Analysis of Bandwidth Efficient Trellis Codes on Channels with Phase Jitter 

Bandwidth efficient trellis coded phase modulation (TCPM) is a powerful means of achiev- 
ing high data rates on bandlimited satellite channels. The performance of these coding/modulation 
schemes is usually analyzed assuming an ideal AWGN channel model. Many real channels, 
however, also suffer from phase jitter due to synchronization inaccuracies in the phase recovery 
loop. This phase jitter results in a time-varying phase error by which the signal constellation 
is rotated. We have begun an examination of the effect of this phase error on the performance 
of TCPM schemes. A summary of our initial results is included as Appendix C of this report 

We have found that codes which are optimum for the ideal AWGN channel may perform 
quite poorly on a chennel subject to phase jitter. We are able to measure the performance 
degradation of these codes in decibels as a function of the ratio of the phase noise power of the 
receiver to the thermal noise power of the channel. For example, Ungerboeck’s [7] 64-state7 
rate 2/3,8-PSK scheme, which achieves a 4.77 dB coding gain over uncoded QPSK on an ideal 
channel, suffers a 1.25 dB degradation in performance when the phase noise power is 20% of 
the thermal noise power. We are conducting a computer search for codes which are optimum 
on channels with phase jitter. The performance of these codes will then be compared to codes 
which were designed for the ideal channel. The results of this code search will be included in 
our next report. 

Our work on bandwidth efficient trellis codes on phase jitter channels is being conducted 
by Mr. Christian Schlegel, a Ph.D. student supported by the Grant. 

[GI * 

4) Construction of Bandwidth Efficient Trellis Codes 

We have continued our work on the construction of multi-dimensional bandwidth efficient 
trellis codes with MPSK modulation. A paper submitted to the IEEE Transactions on Infor- 
mation Theory was included in our February 1987 semi-annual progress report. This paper has 
now been accepted for publication and is currently being revised for re-submission [SI. Upon 
initial submission, the paper attracted quite a bit of attention from the Information Theory 
community. Two other researchers (G. Ungerboeck from the IBM communications research 
laboratory in Zurich, Switzerland and S. S. Pietrobon from the South Australian Institute 
of Technology, Adelaide, South Australia) contacted us about combining our results with 
similar results which they had obtained. The revised paper now contains contributions from 
three research groups and will make an outstanding contribution to the field of coded modu- 
lation. In addition to the original constructions of multi-dimensional trellis codes for s-PSI< 
modulation, new multi-dimensional codes have been added for 16-PSK modulation and multi- 
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dimensional 8- and 16-PSK codes have been constructed which are invariant (transparent) to 
rotations of the signal set when used with differential encoding. This latter property allows 
continued reliable communication when the receiver tracking loop locks onto the wrong signal 
phase. Among the advantages of multi-dimensional codes over conventional two-dimensional 
constructions are (i) the ability to achieve higher data rates, (ii) better coding gains, (iii) the 
ability to achieve transparency to discrete phase rotations of the signal set, and (iv) better 
performance as inner codes in a concatenated system. Reprints of the final version of this 
paper will be submitted when they become available. 

Our work on the construction of multi-dimensional trellis codes was initiated by Mr. Alain 
LaFanechere, a former student supported by the Grant, and by Dr. Robert H. Deng and is 
now being continued, with emphasis on the construction of codes which are invariant to phase 
rotations of the signal set, by Mr. Steven S. Pietrobon, a new Ph.D. student supported by 
the Grant. 

In addition to the construction of multi-dimensional trellis codes, we have also begun work 
on some hueristic construction algorithms for bandwidth efficient trellis codes with larger 
constraint lengths. These constructions are sub-optimum, but are designed to produce good 
long bandwidth efficient codes which are suitable for use with sequential decoding. The large 
constraint lengths make an exhaustive search for optimum codes impractical, but we are 
encouraged that good long codes can be constructed using our algorithms. A summary of our 
initial results is included as Appendix D of this report [9]. The work is being conducted by 
Mr. Marc Rouanne. 

5) Parity Retransmission Hybrid ARQ Using Convolutional Codes 

A paper summarizing our work using convolutional codes with parity retransmission hybrid 
ARQ has been accepted for publication in the IEEE Transactions on Communications [lo]. 
The final version of the paper is currently in preparation. A preprint is included as Appendix 
E of this report. This paper complements work done by Lin and Yu with block codes [ll]. 
The paper includes an unique analysis of the performance of these codes on bursty channels. 
A major result is that throughput efficiency is shown to improve as the channel becomes 
more bursty in nature. This is consistent with the design philosophy of type-I1 hybrid ARQ 
schemes, which are intended for use on bursty channels. The paper also demonstrates that 
the convolutional code scheme achieves a very high reliability. This work was initiated by Dr. 
Laurent R. Lugand, a former Ph.D. student supported by the Grant, and was completed by 
Dr. Robert H. Deng. 

The current paper discusses only the use of rate 1/2 convolutional coding schemes. Higher 
throughputs can be achieved by using rate 2/3 and 3/4 schemes, although the retransmission 
protocol becomes more complex. We will discuss the performance of these higher rate schemes 
in a future report. 
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Abstract 

In a previous paper [l], a concatenated coding system employing 2- 
dimensional (2-D) trellis coded MPSK inner codes and Reed-Solomon 
outer codes for application in high speed satellite communication sys- 
tems was proposed. This paper extends the results of [l] to systems 
using symbol-oriented multi-dimensional trellis coded MPSK inner 
codes. 

The concatenated coding systems will be divided into two classes 
according to their achievable effective information rates. The first 
class uses multi-dimensional trellis coded 8PSK inner codes and achie- 
ves effective information rates around 1 bit/Dimension (spectral effi- 
ciency 2 bps/Hz). The second class employs multi-dimensional trel- 
lis coded 16PSK inner codes and provides effective information rates 
around 1.5 bits/Dimension (spectral efficiency 3 bps/Hz). Both classes 
provide significant coding gains over an uncoded reference system with 
the same effective information rate as the coded system. 

*This work was supported by NASA Grant NAG5-557. 
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I. Introduction 

In [l], a concatenated coding system with 2-dimensional (2-D) trellis coded 

MPSK (TCMPSK) inner codes and Reed-Solomon (RS) outer codes for 

application in high speed satellite communication systems was proposed. It 

was argued there that TCMPSK inner codes along with soft decision Viterbi 

decoding plays two important roles in a concatenated coding system: 

1. Compensating for the bandwidth expansion introduced by the outer 

code; 

2. Compressing the random errors on the inner channel into symbol 

errors which can be corrected by a symbol-error-correcting outer code, 

such as an RS code. 

In trellis (convolutional) inner code/RS outer code concatenated coding 

systems, such as those in [l] and [2] which employ a soft decision Viterbi 

decoder for the inner code, it is unlikely that the beginning of a decoding 

error burst is aligned with the boundary between two RS symbols. This 

fact was first observed by Lee [3] for binary convolutional inner code/RS 

outer code concatenated coding systems and led to the discovery of symbol- 

oriented unit memory inner convolutional codes. This observation leads us 

to consider using symbol-oriented multi-dimensional (multi-D) TCMPSK 

inner codes rather than bit-oriented 2-D TCMPSK inner codes. A typical 

concatenated coding system is shown in Figure 1. The outer code is an 

( N ,  K) RS code with N = 2b - 1 and symbols over GF(2b).  The inner code 

is rate R1 = b/n, 2” - state, multi-D TCMPSK, where b,  the number of 
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information bits entering the inner encoder per encoding interval, is chosen 

to equal the RS code symbol size. 

Encoding is performed in two stages. An information sequence of Kb 

bits is divided into K symbols of b bits each, and each b-bit symbol is 

regarded as an element of GF(2'). These K symbols are used as inputs to 

the RS encoder. The output of this encoder is an N-symbol codeword which 

is symbol-interleaved and then serially encoded by the trellis encoder with 

b input bits per encoding interval. Decoding is accomplished in the reverse 

order. The inner channel is assumed to be an additive white Gaussian noise 

(AWGN) channel with single sided power spectrum No. The inner code is 

decoded by a Viterbi decoder without demodulator output quantization. 

The outer decoder is an errors-only RS decoder. 

The concatenated coding systems will be divided into two classes ac- 

cording to their achievable effective information rate. Class 1 systems 

use multi-D TC8PSK inner codes and achieve effective information rates 

around 1 bit/Dimension (spectral efficiency 2 bps/Hz). Class 2 systems 

employ multi-D TC16PSK inner codes and achieve effective information 

rates around 1.5 bits/Dimension (spectral efficiency 3 bps/Hz). Their per- 

formance is studied in sections I1 and 111, respectively. 

11. Systems Employing Multi-D TC8PSK Inner Codes 

In this section we study the performance of concatenated coding systems 

with the multi-D TC8PSK schemes constructed in [4] as inner codes. For 

any positive integer L 2 2, a rate R1 = b/3L72L - D TC8PSK scheme has 
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an effective information rate in information bits per dimension (bits/D) 

R$\ = b/2L 1 1 bit/D, 2L 5 b ' l  3L - 1. (1) 

Then the overall effective information rate of the concatenated coding sys- 

t em 

is around 1 bit/D. 

Let P, denote the symbol error probability into the outer decoder. As- 

suming bounded distance decoding of the outer code, the decoded bit error 

rate (BER) at the output of the outer decoder is closely approximated by 

where d is the minimum Hamming distance of the RS code and t = [ (d - 1)/2] 

is its symbol-error-correcting capability [5]. 

The performance of the concatenated coding system will be measured in 

terms of the coding gain at a given target BER Pb over an uncoded reference 

system with the same effective information rate R e f f  as the coded system, 

i.e., 2 2 R e f f  PSK modulation.' (This comparison was suggested by Forney 

[6].) The BER for the reference system is then given by 

ISince 'i?2Reff may not be an integer, this uncoded reference system may be only hy- 
pothetical. It is used for comparison purposes since i t  has exactly the same effective 
information rate as the coded system. 
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where &/No is the channel “information bit energy-to-noise power density 

ratio”, and 

Ai = 2 - 2 cos ( 2 ~ / 2 ~ ~ ~ f f )  ( 5 )  

is the normalized minimum squared Euclidean distance of the P R e f f  PSK 

signal set. 

The coding gain of a concatenated coding system over the uncoded 

reference system, denoted by y, is found as follows. We first find the 

( E b / N O ) u n c o d e d  required to achieve a target BER from (4). Then we find 

the ( E b / N O ) c o d e d  required to achieve the same BER using (3), where the 

symbol error probability P, is obtained by computer simulation of the in- 

ner decoder. The coding gain is then given by 

(6) y = lolog,o (e) uncoded dB. 

(fk) coded 

Fig. 2(a) shows the coding gain at p b  = and Pb = lo-’ with respect 

to R,ff for a concatenated coding system with R1 = 5/6, 4-D TC8PSK 

inner codes and N = Z5 - 1 = 31 RS outer codes. Results are given for 

inner codes with 4 and 8 states. The gain (loss) of the reference system 

over QPSK is also plotted in the figure. The coding gain over QPSK of a 

concatenated coding system can be found by adding y to the gain (loss) 

over QPSK of the reference system with the same R,.j. To achieve higher 

effective information rates and larger coding gains, more powerful RS outer 

codes can be employed. Fig. 2(b) shows the coding gain with respect to 

R,ff for a concatenated coding system with the same inner codes as in Fig. 

2(a) but with N = Z1* - 1 = 1023 RS outer codes. The RS symbol size is 
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twice the number of input bits to the inner encoder per encoding interval 

in this case. 

Fig. 3(a) depicts the coding gain for a concatenated coding system with 

R1 = 7/9, 6-D TC8PSK inner codes and N = Z7 - 1 = 127 RS outer codes. 

Higher effective information rates can be achieved by a concatenated coding 

system employing R1 = S/9, 6-D TC8PSK inner codes and N = 28 - 1 = 

255 RS outer codes. Its coding gain is shown in Fig. 3(b). Both systems 

achieve roughly the same coding gains with a 4-state inner code. 

Fig. 4 shows the coding gain for a concatenated coding system with 

R1 = 8/12, 8-D TC8PSK inner codes and N = 2' - 1 = 255 RS outer 

codes. The three inner codes have the same minimum squared Euclidean 

distance d;, but decreasing path multiplicity as the number of trellis states 

increases. Note that only about 0.1 dB more gain is obtained with every 

doubling of the number of trellis states. 
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111. Systems Employing Multi-D TC16PSK Inner Codes 

The overall effective information rate of a concatenated coding system with 

multi-D TC8PSK inner codes is always less than 1.5 bits/D. To achieve 

higher rates, multi-D TClGPSK must be used as inner codes. For any pos- 

itive integer L 2 2, the R1 = b/4L,  2L - D TC16PSK schemes constructed 

in [7] have a n  effective information rate 

R$; = b/2L 2 1.5 bits/D, 3L 5 b 5 4L - 1. ( 7) 

From (2), the overall effective information rate of the concatenated coding 

system is around 1.5 bits/D. 

Due to the symbol-oriented nature of the inner codes, the concatenated 

coding system performance can be estimated using formula calculations 

as well as by simulation. Let S ( d j )  denote the total number of symbol 

errors associated with paths that are distance d j  from the correct path, 

normalized by the number of decoding intervals on each path. Then S(d;) 

is upper bounded by the number of paths that are distance df from the 

correct path, P(dq), a parameter known for most TCM codes. To see this, 

let P,(d?) be the number of paths of length i decoding intervals that are 

distance d, from the correct path, <and let ni be the maximum number of 

symbol errors associated with these paths. Then it follows that 

since the number of symbol errors along any path of length i is bounded 

by ni and n; is bounded by i. The symbol error probability P, to the outer 
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decoder, for large values of Eb/No, can be approximated by 

where R,fj is the overall effective information rate of the concatenated 

coding system. The final decoded BER Pb can be found by using (9) in (3). 

Since a close approximation to P, using (9) requires a high &/No ratio, 

or equivalently P3 << 1, in the following we only consider RS outer codes 

with d = 3 and 5, since these are sufficient to achieve decoded BER’s in 

the range - lo-’. Fig. 5 compares the performance obtained by 

the formula calculations to that obtained through computer simulations 

for a concatenated coding system with an R1 = 5/6, 4-state, 4-D TCSPSK 

inner code and an N = 31 RS outer code. It is seen that the formula 

calculations and the simulations are very close at pb 5 2 x for d = 3 

and Pb 5 2 x for d = 5.2 

The coding gains obtained by formula calculations vs. the inner code 

constraint length v are shown in Figs. 6(a) and 6(b) for systems with 4-D 

TC16PSK inner codes and in Figs. 7(a) and 7(b) for systems with 6-D 

TC16PSK inner codes. The coding gains of the inner codes alone are also 

shown in the figures for comparison. 

The advantage of concatenated coding over the inner code alone is ob- 

vious. With a d = 3 RS outer code, the concatenated coding system offers 

0.75 - 1.25 dB more coding gain at pb = and 1.25 N 1.75 dB more 

2The formula calculations are expected to be more accurate for larger RS code lengths 
N ,  say N = 127, for then the RS code rate is higher and lower values of P, are needed to  
achieve Pb = I O - ~ ( P ,  x and Pb = 10-9(Ps x 1 P ) .  
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coding gain at Pb = lo-’, respectively, than the inner code alone (3 dB 

more coding gain asymptotically). With a d = 5 RS outer code, the con- 

catenated coding system offers 1.25 - 2 dB more coding gain at Pb = 

and 2.25 - 2.5 dB more coding gain at Pb = lo-’, respectively, than the 

inner code alone (4.77 dB more coding gain asymptotically). 
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IV. Conclusions 

We have studied the performance of concatenated coding systems with 

symbol-oriented multi-D TCMPSK inner codes. The advantages of using 

symbol-oriented multi-D TCklPSI1; inner codes are best seen by comparing 

the coding performance with that of concatenated coding systems employ- 

ing bit-oriented inner codes. Fig. 8 shows the performance of two concate- 
nated coding systems. System 1 uses an Ungerboeck R1 = 2/3 (R,,, (1) = . 
1 bit /D),  16-state, 2-D TC8PSII: [SI inner code and a (255,223) RS outer 

code. Systeni 2 employs an R1 = 8/12 (R$: = 1 bit /D),  4-state, 8- 

D TC8PSK [4] inner code and the same outer code. Both systems have 

an effective information rate Ref ,  = 0.8i5 bits/D. Ungerboeck’s 16-state 

code has a 4.13 dB asymptotic coding gain, while the 4-state, 8-D code 

has only a 3 dB asymptotic coding gain and a much larger path multiplic- 

ity. However, system 2 is inferior to system 1 by only 0.05 - 0.11 dl? at 

Pb = - lo-’. T ~ u s ,  the symbol-oriented nature of the 4-state, 8-D 

TC8PSIIC inner code provides an improvement of more than 1 dB in over- 

all performance. Moreover, the 4-state code is simpler to decode than the 

16-state code. 

To further justify this observation, Fig. 9 shows another system per- 

formance comparison. In Fig. I), system 1 uses an R1 = 8/9 [@;$ = 

1.33 bits/D),  4-state, 2-D periodic time-varying trellis coded (PTVTC) 

8PSK [9] inner code and a (255, 201) RS outer code. System 2 uses an 

Rl = 8/9, 4-state, 6-D TCSPSII: [4] inner code and the same outer code. 

Both systems have R,=j = 1.05 bits/D. Both inner codes have a 2.9 dB 
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asymptotic coding gain and roughly the same path multiplicity. However, 

system 2 offers 0.6 dB more coding gain than system 1, which is entirely 

due to the symbol-oriented nature of the R1 = 8/9, 4-state, 6-D TC8PSK 

inner code. 

From the performance studies presented above, we can draw a number 

of conclusions. 

1. The symbol-oriented nature of multi-D TCMPSK inner codes can 

provide an improvement of up to 1 dB in the overall performance of 

a concatenated coding system when these codes replace bit-oriented 

2-D TCWIPSK inner codes. 

2. Most of the coding gain can be obtained by using 4 - 16 - state 

inner 'codes. Therefore, choosing inner codes with a small number 

of trellis states increases the data transmission rate (by reducing the 

number of decoder computations) with only a slight sacrifice in system 

performance. 

3. The path multiplicity of the inner code exerts less influence on the per- 

formance of a concatenated coding system than on the performance 

of the inner code by itself (see Fig. 7(a) at Y = 4 and Fig. 7(b) at 

v = 2). This can be explained as follows. Using Forney's [lo] rule 

of thumb, the path multiplicity degrades the performance of a trellis 

code at Pb = by 0.25 dB for every increase in the multiplicity 

by a factor of 2. However, since the errors in the output of a Viterbi 

decoder are highly bursty, the information bit errors along a path are 
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concentrated into only a few symbol errors. After deinterleaving, the 

symbol errors will be corrected with high probability by the RS outer 

code. This fact provides a basis for statement 2 in section I. 
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ABSTRACT 

An expurgted lower bound on the minimum free Euc!idean distance dpee of Trellis 

Coded Modulation (TCM), which guarantees the existence of good TCM schemes of any com- 

plexity, is presented. Random coding lower bounds (Gilbert bounds) on the free distance of 

binary codes in particular, and of trellis codes in general, are not very tight for small constraint 

lengt!,, whereas they are exponentially tight f u  large amtrak: !cngthi.s. We tighten the best 
lower bound known on the free Euclidean distance of TCM schemes by expurgating the set of 
codes for which the bound holds to obtain an "expurgated bound on The expurgated 

bound is tighter than any other lower bound for small constraint lengths and is equivalent to 

the best asymptotic bounds for large constraint lengths. 

INTRODUCTION 

An efficient binary trellis encoder assigns binaxy codewords to branches to achieve the 

largest possible minimum Hamming distance dh between output sequences generated by 

different information sequences. This guarantees minimum error probability when using max- 
imum likelihood decoding. Similarly, an efficient non-binary Trellis Coded Modulation (TCM) 
scheme assigns channel signals to branches to achieve maximum dpec, and hence minimum 

error probability when using maximum likelihood decoding. Many of the best known trellis 

codes show a rapid increase in the metric (Hamming or Euclidean distance) between diverging 

This work was supported by NASA grant NAGS-557-02 and NSF grant ECS84-14608. 



and remerging branches in the trellis. In other words, the first and last branches of error events 

contribute most of the overall distance between a correct path and an error path, at least for 
short constraint lengths. 

A (k,v) trellis code corresponds to k shift registers of lengths vi S v (1 S i S k). k is the 
input width of the trellis code and v its memory order. Here, we assume that all the shift regis- 
ters have the same length v so that vo = kv is the constraint length of the trellis code. Two 

branches in a trellis are djucent if they leave or reach the same state (Figure 1). The minimum 

adjacent distance d e  of a trellis code is the minimum distance between adjacent branches in 
the trellis. Ungerboeck searched for pseudo-opamum TCM schemes with a large increase in 
the metric at the ends of error events for 2dimensional signal constellations [I]. Most of his 
codes still stand as the best known codes. Wei generalized Ungerboeck's approach, and con- 

structed TCM schemes with large or even maximum ddi for multidimensional signal constella- 

tions [2]. In general, most of the TCM schemes presented by Forney achieve a large minimum 

adjacent distance [3]. All these results indicate that codes with large adjacent distances tend to 

be good codes on the average. Therefore, we derive an expurgated lower bound for a set of 
codes with large minimum adjacent distance. 

The expurgated lower bound on the free Euclidean distance of trellis codes consists of 

two parts: a random coding bound on the distance between branches in the middle of error 

events and a lower bound on the distance between branches at the ends of error events. For 

small constraint lengths, the major contribution to an error path metric comes from the second 

part of the bound, whereas for large constraint lengths the first part of the bound is more 

important. 

THE SET OF CODES 

The derivation of the expurgated lower bound on the free Euclidean distance of trellis 

codes is an extension of the derivation of the random coding bound derived for the set of all 

time-varying Euclidean Trellis Codes [4] which owes much to Chernoff, Gallager, Viterbi and 

Forney [5] - [8] .  The first difference between the two derivations comes from the definition of 
the set of codes. For any 6 1 0, C, denotes the set of (k,v) trellis codes c which have minimum 

adjacent distance dd, 2 6. For any 6, the expurgated bound lower bounds the average free 

Euclidean distance of codes in C& 



The following Lemmas answer the questions: Is it possible, for the same t d i s  code, to 

maximize the distance between diverging branches and the distance between remerging 
branches? How do these maximizations affect the distances between branches that are not adja- 
cent? The Lemmas are based on the notion of 2-state subtrellis. For example, Figure 2b shows 
the two 2-state subtrellises of the 4-state trellis in Figure 2a. 

Lemma 1: Given a signal constellation S which contains M equiprobable signals, Y, and Y: 
represent two non-adjacent branches which correspond to the same time interval t, and y1 is the 
signal labeling Y,, then the probability p(y;IyJ over all codes in C5 that y: is the label for Y: is 

(i) p(y,'bt) S Mp(y,') if Y, and Y,' belong to the same 2-state subtrellis, 

(ii) P(y:bi) = p(yt') if Y, and Y: do not belong to the same 2-state suballis. 

Lemma 2 upper bounds the probability of a particular labeling of an error path given 
. the labeling of the correct path over all odes in Cg 

Lemma 2: Given a labeled path y in a (k, v) trellis code in Cs, the probability of a labeling y' 
for an error path of length T is bounded by 

Proving Lemma 2 consists in counting the number of branches in an error event which satisfy 

(i) or (ii) and are not at the ends of the error event. 

DERIVATION OF THE BOUND 

The first step consists in stating what must be proved 

Assertion: For any 6 1 0 and any expurgated set C, of codes c and for any a 1 0 

elld2 c P(4 c c e  - adf(Y3!l < 1 =? 3 co E C6 5.t. dpec(C()) > d, 
c E c, y E c y'€ ex (c) 



where e&c) is the set of error paths in c diverging from y at time 1. 

The next step, what Forney calls configuration counting, consists of regrouping the 
labeled paths y (or y’) that correspond to the same unlabeled paths (or g. This is very simi- 
lar to configuration counting over the set C of all time varying trellis codes, since it essentially 
depends on the topology of the trellis. This step depends heavily on Lemma 2. The last step 
puts the bound in its final form: 

Theorem: Given a signal constellation S and a distance 6, there exists a (k, v) trellis code 
with maximum minimum adjacent distance dM 2 6 and minimum free Euclidean distance 
such that: 

where 

d,(Y,y’) is the Euclidean distance between signals y and y’, 

q 4 [€(a) - kln21, and 

a is a parameter which optimizes the bound. 

APPLICATION OF THE BOUND 

The expurgated bound is mostly useful for small constraint lengths, since it is 
equivalent to random coding bounds for large constraint lengths. For example, if the Euclidean 
distance can be made proportional to the Hamming distance as in BPSK modulation, then the 
bound applies to binary trellis codes like convolutional codes. Table 1 shows a comparison of 
the expurgated bound with the best random coding bound [9], the best known codes [ 101, and 
He!le:’s very tight upper bound [ 111, for rate -114 convolutional codes. 



Since upper bounds are not as tight as the Heller bound for TCM schemes used with 
M-ary modulation, the bound is most useful for trellis d e s  used with M-ary modulation like 
M-PAM or M-PSK signal constellations. Figure 3 shows the expurgated bound for 8-PSK 
modulation compared with the best known rate 23 codes [l], upper bounds [12]-[13], and the 
random coding bound [4]. 

The expurgated bound, 1Lc any other random coding bound on couvolutional or trellis 

codes, applies only to rate Wn codes generated by k shift registers of equal length. However, 

trellises that represent shift registers of various lengths can be decomposed into nested trellises 

[14], to which the bound applies. Figure 4 shows a general representation of nested trellises. 

Figure 5 shows a 2 level nested trellis ( F i p  5c) where the branches of the trellis in Figure 

5b have been replaced with the nellis in Figure 5b (the input width k determines the number of 

levels of a nested trellis). For example, Ungerboeck's trellises are nested trellises where paral- 

lel branches represent 1-state trellises (Fie- 5 4 .  When the distance between parallel branches 

limits the achievable free distance of a code, they can be replaced with trellises to introduce 

redundancy between sequences of si,.;nals from the same subsets (Figure 4) [15]. The free dis- 

m c e  of a nested trellis co& satisfies 

where dfiee(vJ is the free distance of any subtrellis of level i, where a subtrellis of level i 

represents the last k - i + 1 shift registers [14]. The expurgated bound on dpee can be used to 

lower bound each dfieC(v;) by replacing the distances between signals with distances between 

subsets of signals that correspond to level i (Figure 4). This gives a lower bound on the 

minimum free Euclidean distance which applies to any trellis code. 

A more general and tighter version of the bound can be derived, but involves a more 

detailed proof [ 151. In general, this bound shows that random coding bounds can be improved 

significantly by restricting the set of codes. It also shows that codes with a large increase in the 

memc at the ends of error events perform well on the average. Finally, it can be used to com- 
pare TCM schemes with small constraint lengths without having to search for the correspond- 

ing codes. 
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Abstract 

Bandwidth efficient Trellis Code Modulation (TCM) is usually designed to maximize the 
free Euclidean distance dire,. While this assures good performance on AWGN channels 
it is shown that such codes suffer severe degradation on channels with phase errors. The 
problem is compounded due to the fact that the performance gain of TCM coding schemes 
is achieved at the expense of expanding the signal sets used, which results in poorer phase 
synchronization. 

A generalized distance measure is introduced which becomes the new design criterion 
for coding on channels with phase jitter. This generalized distance is found by applying 
the Chernoff bounding technique to these channels. The performance of existing codes is 
compared to some new codes, designed with the new criterion in mind. Hard quantizing 
the output of the jitter channel in conjunction with RS-codes in order to avoid dealing with 
unreliable distance metrics is also esamined. 

'This work was supported by NASA Grant NAGS-557 and NSF Grant ECS 84-14608 
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BANDWIDTH EFFICIENT CODING ON CHANNELS WITH PHASE 
JITTER 

Christian Schlegel and Daniel J. Costello, Jr. 
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Notre Dame, Indiana 46556 

Summary 

In recent years bandwidth efficient Trellis Coded Modulation (TCM) with multilevel/phase 
signaling introduced by Ungerboeck [l] has become increasingly popular and much analysis 
has been devoted to the performance of these coding schemes on AWGN channels. In this 
paper we examine AWGN channels that further suffer from phase jitter due to synchroniza- 
tion inaccuracies of the phase recovery loop. This phase jitter materializes as a time varying 
phase error O ( t )  by which the signal constellation is rotated. We assume throughout the 
paper that DSB AM-modulation is used with coherent reception and that the phase error 
therefore affects two dimensions at a time (;.e., the quadrature and in-phase components). 
We further assume at each signaling interval that the receiver has no information about 
the phase error, because if it had such information, the received 2-dimensional signals could 
simply be rotated back by the erroneous phase angle into the correct position. 

An upper bound is presented on the two code word error probability for coded commu- 
nication systems on an arbitrary memoryless channel. This bound, which is based on the 
Chernoff bounding technique, has the form 

where x = [zl, - - -zN] and 1 = [&, - - i t N ]  are the two code words of length N and C(&,z j )  
is the Chernoff factor of the two 2-dimensional signals zj and kj. Using the bound (1) on 
the two code word error probability, the cutoff rate & for a random ensemble of codes and 
the transfer function bound for specific codes can be evaluated immediately. 

We then apply (1) to the “phase jitter” channel. The carrier phase is usually tracked with 
a first-order phase locked loop as discussed in [2] and [3]. The phase error O ( t )  in the steady 
state is then known to obey a Tikhonov density function which can be closely approximated 
by the Gaussian density function for phase deviations 00 as large as 10 degrees. Other 
contributions to the phase error can also be modeled as Gaussian processes, as discussed in 
[4]. We therefore use the Gaussian denisty function for 8 in the analysis, i.e., 

‘This work was supported by NASA Grant NAC5-557 and NSF Grant ECS 84-14608 
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We then show that for the phase jitter channel the Chernoff factor becomes 

where p = ai/No is the ratio of phase noise power to channel noise power. The above 
equation shows that in the case of phase jitter a new distance measure dominates the 
performance of a code. This distance measure 

is still additive and reduces to the Euclidean distance for negligible phase noise, i.e., for 

We contrast the performance of trellis codes with maximum Euclidean distance to TCM 
codes specifically designed for phase jitter channels. For example, a 64-state Trellis Code 
using 8-PSK signaling with a gain of 4.77 dB on an AWGN channel suffers a degradation 
of 0.38 dB for p = 0.1, 1.25dB for p = 0.2, and 5.07dB on a severly impaired channel with 
p = 0.4. Another bandwidth efficient coding scheme employs Reed Solomon block codes 
with multilevel/phase signaling in conjunction with hard decision decoding. This method 
is inferior to TCM coding on AWGN channels and for small SNR values, but becomes more 
attractive on channels with phase jitter because the hard decision decoding is less sensitive 
to phase errors. 

p + 0. 
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ABSTRACT: We present a construction technique for good trellis codes with large’ 

constraint length. The technique can be used for any practical constraint length, any 

signal constellation, and any code rate. The construction does not require an exhaustive 

search, so that the complexity of the construction does not increase significantly with 

the constraint length. However, it requires tables of optimum distance profile rate l/m 

trellis codes for small constraint lengths. Rate Mn trellis codes are constructed from a 

nesting of good rate l/m trellis codes (m I n). The trellis codes constructed are regular 

and the construction technique also applies to convolutional codes. The codes obtained 

are generally slightly sub-optimum, but in certain instances, the codes achieve an 

optimum distance profile and a maximum free distance. The construction technique is 

interesting both from a theoretical and a practical point of view. To the author’s 

knowledge, it is the first systematic construction technique for trellis codes which can 

be used with any rate, constraint length, and modulation scheme, and it gives some 

insight into the structure of trellis and convolutional codes. From a practical point of 

view, good distance profile codes with large constraint lengths will perform well with 

sequential decoding, where it is not so crucial to have optimum free distance codes. 

This work was supported by NASA grant NAG5-557 and NSF grant ECS84-14608. 
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MARC ROUANNE 
DANIEL J. COSTELLO, Jr. 

Dept. of Elec. di Comp. Engr 
Univ. of Notre Dame 

None Dame, IN 46556 

SUMMARY 

We present a construction technique for good trellis codes with large constraint 

length. The technique can be used with any practical constraint length, any signal con- 

stellation, and any code rate. The construction does not require an exhaustive search, 

so that the complexity of the construction does not increase significantly with the con- 

straint length. However, it requires tables of optimum distance profile rate l/m trellis 

codes for small constraint lengths. The trellis codes constructed are regular and the 

construction technique also applies to convolutional codes. Once the code is con- 

structed we check its distance profile. We generally obtain slightly sub-optimum codes, 

but in certain instances the codes achieve an optimum distance profile and a maximum 

free distance. 

The construction technique is interesting both from a theoretical and a practical 

point of view. To the author's knowledge, it is the first systematic construction tech- 

nique for trellis codes which can be used with any rate, constraint length, and modula- 

tion scheme, and it gives some insight into the structure of trellis and convolutional 

codes. From a practical point of view, good distance profile codes with large con- 

straint lengths will perform well with sequential decoding, where it is not so crucial to 

have optimum free distance codes. 

The construction technique nests rate l/m trellis codes to obtain rate Wn trellis 

codes (m s n). Note that some rate l/m trellis codes can be replaced with block codes 

to obtain most of the previously known trellis codes [l]-[SI. First, the signal constella- 

tion is partitioned into nested subsets. These nested subsets are then used as the signal 

constellation for the nested trellis codes, like subsets are used for uncoded bits in some 
~ ____ 
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known trellis codes [l]. From tables of optimum rate Urn trellis codes, we choose an 

optimum distance profile code for each level of the signal constellation partitioning. 

These rate l/m codes must be good so that the upper bound on the free distance of the 

nested trellis codes achieves a large value [4]. Then, the rate l/m subtrellises can be 

nested to form a rate k/n trellis code. Finally, the distance profile of the rate k/n trellis 

code can be computed. So far, there is no theoretical lower bound on the free distance 

of nested trellis codes, so that it cannot be guaranteed that the resulting code is good. 

However, we always obtained good codes by applying this technique or slightly 

modified versions of it [5]. 

. 

The following table shows some rate 2/3 binary codes obtained through the 

above construction. We do not include codes of large constraint length here, although 

they can be easily constructed. Each code consists of two rate 1/2 nested trellis codes. 

The rate 1/2 codes are optimum binary convolutional codes. The table shows the 

achieved Hamming free distance, the free distance of optimum codes and of Optimum 

Distance Profile (ODP) codes, and the upper bound on the free distance of the nested 

trellis codes. For simplicity, we chose rate 112 sub-trellises, although rate 1/3 sub- 

trellises give a larger value of the upper bound, and generate some better nested codes. 
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ABSTRACT 

Hybrid Automatic-Repeat-Request (ARQ) error control coding makes use of 

both error detection and error correction in order to achieve high throughputs and low 

undetected error probabilities on two-way channels. For non-stationary channels, 

where the channel bit error rate (BER) varies over time, the technique of parity 

retransmission allows the error control strategy to adapt to the state of the channel. 

In this paper we propose a parity retransmission hybrid ARQ scheme which uses 

rate 1/2 convolutional codes and Viterbi decoding. The performance analysis is based 

on a two-state Markov model of a non-stationary channel. Throughput efficiency is 

shown to improve as the channel becomes more bursty in nature. 
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1. Introduction 

Automatic-repeat-request (ARQ) strategies have long been utilized to control 

errors on two-way digital transmission links. Most of the work in this area has been 

done using block codes with error detection only, due to the packetized nature of the 

messages and the relatively low coding overhead allowed in many systems. However, 

in systems where the packet lengths are relatively large, say on the order of 1000 bits 

or more, and where the noise and/or interference levels are high, error detection only 

results in a low throughput due to the large number of retransmissions required. Satel- 

lite networks [l] and packet radio [2] are examples of such systems. In these instances 

a combination of error correction and error detection can offer significant advantages 

over an error detection only system. This is called hybrid ARQ error control. 

Two basic types of hybrid ARQ error control strategies have been considered. 

The first type includes parity bits for both error detection and error correction in each 

transmitted packet. The decoder will correct those received packets within the error- 

correcting capability of the code, while requesting a retransmission of those packets 

with detectable but uncorrectable errors. Since bits for error correction are sent with 

every packet, the code rate places an upper limit on the throughput efficiency of the 

system. For this reason, this strategy is best suited for systems in which a fairly 

. 
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A constant level of noise and interference is anticipated on the channel. In this case, 

enough error correction overhead can be designed into the system to correct the vast 

majority of packets, thereby greatly reducing the number of retransmissions compared 

to an error detection only scheme and enhancing the system throughput. On the other 

hand, if the channel is quiet most of the time and noisy only on occasion ( a non- 

stationary channel ), designing a code to correct the occasional noisy bursts will 

reduce throughput compared to an error detection only scheme because the error 

correction overhead is wasted during the quiet periods. 

In the second type of strategy, bits for error detection only are sent on the first 

transmission. If errors are detected and a re.transmission requested, parity bits on the 

original information packet are sent along .with some bits for error detection. If no 

errors are detected on the second transmission, the parity bits are inverted to recover 

the original information. If errors are detected, the two received packets are treated 

together as a code word in a rate 112 code. If the error-correcting-capability of the 

code is exceeded, and decoding is unreliable, the original transmission is repeated. 

This process continues, alternating transmissions between the original data packet and 

the parity packet, until either an error-free packet is received or error correction is pos- 

sible. This strategy is referred to as parity retransmission [3]. 

Since parity bits for error detection onEy are sent on the first transmission, the 

upper limit on throughput efficiency is near 1. Throughput suffers only when 

retransmissions are required, since it is only then that parity bits for error correction 

are sent. In other words, parity bits for error correction are transmitted only when they 

are needed. It is this feature which gives the parity retransmission strategy the ability 

to adapt to changing channel conditions. When the channel is quiet, parity bits for 

error detection only are transmitted, and a high throughput is maintained. Only when 

noise or interference causes packets to be received incorrectly are parity bits for error 

correction transmitted, resulting in a reduced throughput. This adaptive capability of 
the parity retransmission strategy is particularly useful in applications such as satellite 

communication and packet radio, where fluctuating channel conditions due to fading 

and interference are commonly encountered. 

Either block or convolutional codes can be used with both types of strategy. 

Schemes using the first strategy and block codes have been in existence for quite some 



' time [4-91. Several of these schemes using convolutional codes have also appeared in 

the literature [2,10-121. Parity retransmission using block codes was introduced more 

recently [3,13,14]. Several similar schemes using convolutional codes have also been 

presented [15-181. Although all the parity retransmission schemes that have appeared 

in the litreature have been proposed for use 011 non-stationary channels, the analysis in 

each case used a stationary channel model. 

In this paper, the performance of a parity retransmission hybrid ARQ scheme 

using rate 1/2 convolutional codes on a non-stationary channel is analyzed. In section 

2, a protocol is described which is capable of achieving higher throughputs than previ- 

ously proposed parity retransmission schemes. In section 3, a two-state Markov chain 

channel model is defined. This model constitutes a first approximation to a non- 

stationary channel. In sections 4 and 5, the two-state channel model is used to analyze 

the throughput and undetected error probability of the protocol presented in section 2, 
when the receiver has both an infinite and ig finite buffer size. It is shown that the 

throughput improves as the channel becomes more bursty. This corresponds with our 

intuitive notion that parity retransmission scht:mes are best suited for non-stationary or 

bursty channels. In section 6, performance curves are calculated for a particular exam- 

ple. 

. 

2. Description of the Protocol 

The parity retransmission hybrid ARQ scheme with a rate 112 convolutional code 

employs two codes, CO and C1. C1 is a ( 2, l., m ) convolutional code with two genera- 

tor polynomials, Gl(x) and G2(x), and it is used for error detection and error correc- 

tion. Co is a high rate (n-m, n-m-r) binary block code used for error detection only, 

where r is the number of parity bits in Co. 

When an (n-m-r)-bit information sequence I(x) is generated, it is first encoded 

into a code vector, denoted by J(x), in the (n-m, n-m-r) block code Co. Then the 

(n-m)-bit vector J(x) is encoded into an n-bit code vector Vl(x)  = J(x).Gl(x), and V,(x)  

is transmitted over the channel. 

Let VI(,) be the noisy version of V I @ )  aniving at the receiver. The syndrome of 

fl(x) is checked in two steps. First cl(x) is considered as a noisy version of a code 

word in the (n, n-m) shortened cyclic code generated by Gl(x) .  The syndrome of the 
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4 1 shortened cyclic code is checked; if it is zan, we have an estimate j ( x )  of J(x). Next 
the syndrome of j ( x )  in the high rate (n-m, n-m-r) block code is checked; if it is 

zero, we have an estimate f (x )  of I(x). The estimate i<x) is assumed to be error-free 

and is delivered to the data sink. In this case, we call e l ( x )  a zero syndrome vector 

(ZSV). If, however, the first or the second syndrome check is negative, Le., is a 
nonzero syndrome vector (NSV), then a NACK signal is sent to the transmitter and 

c l ( x )  is stored in a receiver buffer. The transmitter then sends a second vector 

V2(x) = J(x).G2(x), and c2(x) is received after a round trip delay. Its syndrome is 

checked in two steps in the same way as Ql(x). If both syndromes are zero, 92(x) is 

assumed to be error-free and an estimate f(.r) of I(x)  is recovered directly; otherwise, 

c l ( x )  and f2(x) are decoded using the Viterbi algorithm, producing an estimate &x). 

The syndrome of j<x) is then checked using the (n-m, n-m-r) block code. If it is zero, 

f (x )  is recovered and delivered to the data sink; if it is nonzero, a second NACK is 

sent requesting the retransmission of VI@). The previously received version of V,(x),  

el@), is discarded at the receiver and replaced by the new one. The receiver continues 

checking the syndrome of each received vector, trying to decode using the Viterbi 

algorithm if the syndrome check is negative., and requesting a retransmission of Vl(x)  

or V2(x) in alternating order if the decoding is unsuccessful, until the information vec- 

tor is delivered to the data sink. 

3. Description of the Channel Model 

Two-state model 

Let us model the channel as a Markov chain ( see Fig.1 ). State 0 is the quiet 

state, where the bit error rate (BER) is E@ State 1 is the noisy state, where the BER is 

% eo. p is the transition probability from state 0 to state 1 and p’ is the transition 

probability from state 1 to itself. To simplii the model’s treatment, we assume that 
one time frame in the model corresponds to the transmission of one data vector, i.e., 

the noisy bursts last for a multiple of the transmission time of a data vector. This type 

of model was first introduced by Gilbert [l9]i. 

It can be shown that the average burst iength is 
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’ the average BER is 

- (1-P?e:,+PE1 
E =  9 (2) 

and the duty cycle of the noisy bursts, or the probability of being in the noisy state , is 

1 - p ’ + p  

P P1= CpT 9 

or 

(3) 

Four parameters govern the two-state channel model. They can be chosen to be 

6-, F ,  p l ,  and the high-to-low BER ratio p 1’ - E1 [20]. 
EO 

Burst noise model 
, 

Of the four parameters selected, one is the average channel BER and the other 

three characterize the burstiness of the channel. We shall reduce the number of 

degrees of freedom by proposing a model for the noise bursts which can be dense (low 

duty cycle p 1  and high intensity, Le., large high-to-low BER ratio p ) or diflwe (large 

duty cycle and low intensity), as shown in Fig. 2. These terms were first introduced 

by Massey [21]. The conditions that we impose on a burst channel model are: 

lim eD = 0, 
PI + 0 

lim = 1/2, 
PI -+o 

and 
- lim = E, 

P1 -+ 1 

- lim = E. 
PI -+ 1 

Conditions (5 )  represent the limiting case of a dense burst channel, i.e., p1 + 0 and 

p -+ 00, while conditions (6) represent the limiting case of a diffuse burst channel, i.e., 

p 1  + 1 and p + 1, which is equivalent to a binary symmetric channel (BSC). 
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i The two-state channel model described by (1) - (4) does not meet these condi- 

tions. In fact, from (4) we see that only coiidition (6.2) is satisfied. We now modify 

the two-state channel model such that conditions (5 )  and (6) are met. 

Let 

-_ 
Eo = E P l .  

From (4) and (7), we have 

E F + 1/2 - .I< 1/2-i3( 112 + 3 q  
E l = - -  ( l -p l )  F, for p 1  2 - 

2 F  
7 

P1 

otherwise. 1 
E l  = 2 7  

(7) 

From (7), we see that (5.1) and (6.1) are satisfied. From (8.1) and (8.2), we see that 

(5.2) and (6.2) are also satisfied. Now the burst channel model is completely 

described by €, p l ,  and % for if these three parameters are known, p’, p ,  E ~ ,  and can 

be determined from (l), (3), (7), and (8). Before leaving this section, we note that the 

special case p 1  = p = p’ corresponds to the two-state block interference (BI) channel 

model proposed by McEliece and Stark [2.2]. The BI channel model is completely 

determined by p1 and E 

4. System Throughput and Undetected Error Probability Analysis with an Infinite 
Receiver Buffer 

In the next two sections, we analyze the throughput and the undetected error pro- 

bability of the parity retransmission hybrid ARQ scheme in the selective-repeat mode 

for both an infinite receiver buffer and a finite receiver buffer. Our analysis is based 

on the assumption that the feedback channel is error-free. In order to carry out the 

analysis, we first model the receiver’s decoding status as a Markov chain. 

Receiver’s decoding status ’ 

Consider a Markov chain with N possible states: 1, 2, . . . , N ,  where changes in 

states can occur only at discrete times tl, t2 , . . . , tn ,... . Let us denote the transition 

probability from state i to state j after k time units by pO(k). pO(k) is called the 

k-step transition probability, and it can tie determined from the one-step transition 
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probabilities, namely, p i i ( l ) ,  or simply pk between all pairs of states. These transition 

probabilities can be summarized by an NxN matrix, called the one-step transition pru- 

bability matrix: 

The probabilities in each row of P - add to 1. The k-step transition probabilities can 

then be determined from the k-step transition probability matrix, which is given by 

The states in the Markov chain can be divided into several categories. The one 

of most interest to us is the absorbing state. A state i in a Markov chain is an absorb- 

ing state if the k-step transition probability pii(k) = 1, k = 1, 2 ,... . Thus, an absorb- 

ing state is a state that cannot reach any other state in the chain except itself. A Mar- 

kov chain may contain more than one absorbing state. 

For the parity retransmission hybrid ARQ scheme described in Section 2, decod- 

ing is said to be successful if the decoded information vector is accepted by the user (it 

may be decoded correctly or contain undetected errors). Suppose that an initial NSV 

has been received. Then the receiver's decoding status can be modeled by the Markov 

chain shown in Fig.3. In Fig.3, states 00, 01, 10, and 11 mean that the decoder has 

received two NSVs, sent while the channel was in states 0 and 0, 0 and 1, etc., and 

that decoding has been unsuccessful. State e indicates an undetected decoding error. 

State c corresponds to error-free decoding. Once the system is in state e or state c, suc- 

cessful decoding results and retransmissions, will therefore terminate. Hence, both state 

e and state c are absorbing states and we assign pe,e = pc,c = 1. On the other hand, if , 
upon the reception of a retransmission , the decoder cannot recover the data vector, 

retransmissions will continue (the Markov chain will remain in state 00, 01, 10, or 11) 

until successful decoding occurs (the Markov chain reaches state e or state c ). 

To derive the transition probabilities of the Markov chain, we first consider the 

undetected error probability. Undetected errors occur at two levels: the syndrome 

check before convolutional decoding and. the syndrome check after convolutional 
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' 
decoding. First we consider the former case. Let Qi, i = 0,1, be the probability of 

receiving a ZSV with an undetected error pattern while the channel is in state i. Qi 

can be upper bounded by [23] 

where m + r is the sum of the memory order of the convolutional code and of the 

number of parity checks in the block code (the two codes are treated at this stage as a 

single block code with m + r parity checks). 

To find the probability of undetected error after convolutional decoding, we need 

to evaluate the BER at the output of the convolutional decoder. The state ij in Fig. 3 
means that a NSV transmitted over channel state i has been held in the receiver buffer, 

another NSV sent over channel state j'after one round-trip delay is received, and the 

convolutional decoding of the two NSV's fails. The average BER in the two received 

NSV's before convolutional decoding is then 

where 

, Ei 
Ei = -- 

p N i  
(13) 

is the conditional BER given that the syndrome is nonzero, and 

is the probability of receiving a NSV sent while the channel was in state i. The BER 
at the output of the convolutional decoder is upper bounded by [24] 

where T(X, Y) is the generating function of the convolutional code. 

The output of the convolutional decoder is then checked by the (n-m,n-m-r) 

block code Co. We assume that the errors at the output of the convolutional decoder 

are independent. The probability of undetected error after convolutional decoding in 

state ij is then upper bounded by 



The probability of decoding failure is the probability of a nonzero syndrome in the 

block code Co, and it is given by 

Pg = 1 - [ l-Pb(i~]]"" - QG. (17) 

By arranging the states of Fig.3 in the order: 00, 01, 10, 11, e, c , the transition 

probabilities of the Markov chain are found in Appendix A and are summarized in the 
following transition probability matrix: 

where, from (A.2), (A.3), and (A.4), 



. 
- 10- 

PO0,Ol = pOl(d) pN1 

pol(d) and pll(d) are the d-step channel transition probabilities given by (A.l), and d is 

the number of code vectors that can be transmitted during one channel round trip delay 

period. 

Throughput efficiency calculation 

Throughpur efficiency is defined as the ratio of the average number of data vec- 

tors accepted by the receiver and delivered to the user per unit time to the total 

number of vectors that can be transmitted per unit time [26]. Let E[NI be the 

expected total number of transmissions (including the initial transmission and all 

retransmissions) required for a data vector to tle successfully accepted by the receiver. 

Then the throughput of selective-repeat parity retransmission hybrid ARQ is given by 

[261 
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In practice, m n and r a n and hence (n-m-r)ln =: 1. Let T be the expected 

number of retransmissions required for a data vector to be successfully decoded by the 

receiver. Then E[NI can be expressed as 

where Ti, i = 0,1, is the expected number of retransmissions required for a data vector 

to be successfully decoded by the receiver, given that the initial transmission was a 

NSV and was sent over channel state i, and po = 1 - p l  is the probability that the 

channel starts in state 0. Thus only Ti, i = 0, 1, must be determined to find q. 

Referring to the Markov chain shown in Fig. 3, and assuming that an initial NSV 

has been received, we see that retransmissions will be needed to recover the informa- 

tion sequence associated with the initial NSV. As soon as an undetected error or 

error-free decoding occurs (Le., the Markov chain reaches state e or state c ), 

retransmissions will terminate, and the estimated information sequence will be 

delivered to the data sink. Therefore, the expected number of retransmissions is the 

infinite-step chain mean absorption rime defined in Appendix B, and (B.9) can be 

applied to find Ti , i = 0, 1. 

Suppose that the initial NSV was sent over channel state 0. To determine To, 

either state 00 or state 10 in Fig.3 can be used as our initial state, since both states 

assume that a NSV sent over channel state 0 is held in the receiver buffer and waiting 
to be processed upon reception of the hi: retransmission. Hence, the infinite-step 

chain mean absorption time ( or equivalently, the expected number of retransmissions ) 

starting from states 00 and 10 should be the same, Le., 

(22.1) 

Substituting the transition probabilities of (19) into (B.9), we obtain the following 

equations: 

Moo = 1 + Moo Po0,oo + Mol Po0,Ol 
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L Mol = 1 + MlO PO1,lO + Mll PO1,ll. 

Using (22.1) and (22.2), the above equations become 

and their solutions are 

1 + Po0,Ol. - P01,ll 

(1 - Po0,Oo) (1 - PO1,ll) - POo,Ol POl.10 
To = 

. and 

(23.1) 

(23.2) 

(24.1) 

(24.2) 

Therefore, from (21) and (24) we obtain 

The throughput for selective-repeat parity retransmission hybrid ARQ can then be 

obtained by substituting (25) into (20). 

For the special 'case when the channel. is a BSC with BER E , (25) can be 

simplified, after some calculations, to 

where 

P N =  1 - (1 -E)" (27) 

is the probability of receiving a NSV and 

is the probability of a convolutional decoding failure on two NSVs, 

and 

E El = -- 
1-( 1-E)" 
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I The throughput on a BSC is then 

In [17], only a lower bound was obtained for a parity retransmission hybrid ARQ 

scheme on a BSC. 

Undetected error probability calculation 

The undetected error probability is the average probability of decoding error, 

given that the receiver accepts a data vector. We denote this average probability by 

P,. It is easy to see that 

where Vi, i = 0,1, is the probability of undetected error in the data vector accepted by 

the receiver) given that the initial transmission was a NSV and sent over channel state 

1. 

Referring to Fig. 3, given that an initial KSV was received) undetected errors will 

occur if and only if the Markov chain enters state e. Therefore, finding Vi is 

equivalent to finding the infinite-step absorption probability of the Markov chain (see 

Appendix B). Let Am,,, AOlc, AlO,,, and All le  be the probabilities that the chain of 

Fig.3, starting at states 00, 01, 10, and 11,  respectively, will eventually be absorbed by 

state e. By an argument similar to the throughput calculation, we can show that 

Substituting the transition probabilities of (19) into (B.8), it follows that 

From (31), the above equations reduce to 

(32.1) 

(32.2) 



Solving (32) we obtain 

(33.1) 

(33.2) 

Thus, from (30) and (33), the probability of undetected error for selective-repeat parity 

retransmission hybrid ARQ with an infinite receiver buffer is given by 

If the channel is a BSC with BER E, (34) can be simplified to 

where PN and Pfare given by (27) and (28), respectively, 

Q 2 2-(mr)[l - 2 (1  -- E)n + (1  - 2 E)n]  (36) 

is the probability of receiving a ZSV with an undetected error pattern, and 

Pe I 2-‘[1 - 2 (1 - pb)R-m + (1  - 2p$-m] (37) 

is the probability of undetected error after convolutional decoding of two NSVs. 

5. System Throughput and Undetected Error Probability with a Finite Receiver 
Buffer 

In this section we analyze the throughput and the probability of undetected error 

for the selective-repeat parity retransmission hybrid ARQ with a finite receiver buffer. 

Let B be the number of code vectors that the receiver buffer can store. The perfor- 

mance is analyzed for the case when 

B = 1-d, 1 == 1,2,3 ,.... (38) 
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The system with receiver buffer size B operates as follows. Normally, the 

transmitter sends code vectors continuously to the receiver. The receiver checks the 

syndrome of each received code vector. If the syndrome is zero, the received vector is 

assumed to be &or-free and is delivered to the user, and an ACK signal is sent to the 

transmitter. When the channel is quiet, data transmission proceeds smoothly; error-free 

vectors are delivered to the user in consecutive order and the receiver buffer is empty. 

The receiver is said to be in the normal phase if the receiver buffer is empty. 

When a received code vector is detected in error (NSV) while the receiver is in 

the normal phase, the receiver enters the blockedphase and sends a NACK to the 

transmitter. The NSV is then stored in the receiver buffer for error correction at a later 

time. In the blocked phase, the receiver continues to check the syndrome of each 

incoming received code vector, sends an A.CK to the transmitter for each received 

ZSV, and sends a NACK to the transmitter for each received NSV. The received vec- 

tors, no matter whether they are ZSVs or NSVs, are stored in the receiver buffer until 

they are ready to be released to the data :sink. In the blocked phase, no vector is 

delivered to the data sink until the earliest received NSV is accepted by the data sink. 

If the earliest NSV is recovered within I retransmissions, the receiver then starts 

to deliver this vector and the subsequent ZSVs ( which are held in the receiver buffer ) 

to the data sink in order until the next NSV is encountered. This vector then becomes 

the earliest NSV. If all the vectors held in the receiver buffer are released to the data 

sink after the earliest NSV has been recovered, the receiver buffer becomes empty 

again and the receiver returns to the normal phase. 

If the receiver fails to recover the earliest NSV after 1 retransmissions, no further 

retransmissions are allowed. The receiver simply delivers the erroneous decoded vector 

to the data sink and sends an ACK to the transmitter. Because the receiver has a buffer 

size B = Zad, buffer overflow will nbver occur, and the system operates in the same 

way as though the receiver had an infinite buffer size, except for the forced vector 

delivery upon receiving the lrh - retransmission. The tradeoff in system performance by 

limiting the number of retransmissions to I will be an increased throughput and a 
decreased system reliability compared with systems without this limitation. 
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- 
0 0 P00,s 

0 0 Pl0,s 

PO1,lO P01,ll POlJ 

Pl1,lO P11,ll Pl1,s 
0 0 1 - 

’ Throughput efficiency calculation 

Let E[N(I)] be the expected number of transmissions needed to deliver a code 

vector to the user within 1 +l transmissions ( including the initial transmission and up 

to 1 retransmissions ). The throughput of the selective-repeat parity retransmission 

hybrid ARQ with receiver buffer size B = 1.d is then 

1 n-m-r -- 
rl = E[N(I)] It e 

(39) 

By a similar argument as in the infinite receiver buffer case, we obtain 

where Ti(r), i = 0, 1, is the expected number of retransmissions required for a data vec- 

tor to be successfully decoded within‘l retransmissions, given that the initial vector 

was a NSV and sent over channel state i. 

We readily recognize that finding Ti(o is equivalent to finding the Markov chain 

mean absorption time within 1 transitions ( see Appendix B ), so that (8.4) and (B.6) 

can be used. Note that the computation can be reduced by combining state e and state 

c in Fig.3 into a single state, called state s, since both states e and c are absorbing 

states. Thus state s is simply the state corresponding successful decoding. The new 

matrix, obtained by 

Pl0,oo Pl0,Ol 
0 0 

p =  I 0 0 

merging states e and c into state s, is given 

Y (41.1) 

where 

Pij,s = Pij,e + Pgc. (41.2) 

Let Moo(l) and Mol(l) be the mean absorption time within 1 transitions of the Mar- 

kov chain described by (41), conditioned on the chain starting in state 00 and state 01, 

respectively. From (B.4) we have 



- 17 -. 

where pW,(n) and pol,@) are the n-step transition probabilities from state 00 and state 

01, respectively, to state s, and they can be determined from (41), (19), and (10). The 

system throughput of selective-repeat parity retransmission hybrid ARQ with receiver 

buffer size B = I-d, fiom (39), (40), and (42), is given by 

Undetected error probability calculation 

The probability of undetected error for selective-repeat parity retransmission 

hybrid ARQ with an infinite receiver buffer is given in (30). The probability of 

undetected error for the system with receiver buffer size B = fed can be derived from 

(30) with a slight modification. It is given by . . 

where Ui(f )  is the probability of undetected error within I retransmissions, given that 

the initial transmission was a NSV and sent over channel state i. Ei(f )  is the probability 

of unsuccessful decoding on the lth - retransmission, given that the initial transmission 

was a NSV and sent over channel state i. Since only up to I retransmissions are per- 

mitted in the system, if the Ze retransmission results in a decoding failure, the errone- 

ously decoded data vector will be delivered to’ the data sink. Hence, it is reasonable to 

regard this decoding failure as an undetected mor, and its probability , Ei(f) ,  should be 

included in (44). 

Let Am,,(f) and AOl,e(f) be the probabilities that the Markov chain, starting at 

states 00 and 01, respectively, will be absorbed by state e within I transitions. Clearly, 

Uo(f) = Aoote(f> and U1(f) = Aol, ,(f) .  It follows. from (B.2) that 

and 

(45.1) 

(45.2) 



- 18 - 

' where poi,#), i = 0, 1, is the 2-step transition probability from state Oi to state e. We 

also have 
I 

chain reaches 00, 01, 10, or 11 after 1 steps [ The chain starts in 

Combining (45) and (46), we obtain 

which is the probability that the chain starting in state Oi , i = 0, 1, will not reach state 

c within 2 transitions. In other words, Ui(l) + Ei(Z) is simply the probability that the ini- 

tial NSV will not be decoded correctly within 1 retransmissions. Thus, the probability 

of undetected error for selective-repeat parity retransmission hybrid ARQ with receiver 

buffer size B = led, from (44) and (47), is given by 

6. Examples 

In this section, we plot the performance of selective-repeat parity retransmission 

hybrid ARQ for the following parameters: 

Co : (1024, 1000) binary code 

C1 : (2, 1, 6 )  d f =  10 convolutional code 

Channel round trip delay : d = 128. 

Four curves, numbered 0 through 3, appear in each plot. They correspond to four 

values of the burst duty cycle, which was defined in section 3 as the parameter which 

determines the burstiness of the channel: 

Curve 0 : p1 = 1 ( Stationary channel ) 

Curve 1 : p1 = 0.25 ( Diffuse burst channel ) 

Curve 2 : p1 = 0.1 
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Curve 3 : p1 = 0.05 ( Dense burst channe:l ) . 
In the performance calculation, we found that, for a given p1 and E different 

values of Fhave a very small influence on the throughput and undetected error proba- 

bility. Therefore, we considered only the caise when p =p' =pl,  i.e., a BI channel. 

Figs. 4 and 5 show the throughput and the probability of undetected error for 

selective-repeat parity retransmission hybrid ,4RQ with infinite receiver buffer. Fig. 6 
shows the probalility of undetected error with receiver buffer size B = 5d. The system 

throughput is essentially the same as in the infinite receiver buffer case. 

From Fig. 4 we observe that the system throughput is much better for a given 

average BER if the errors occur in bursts, since the errors are then concentrated in 

fewer vectors and the convolutional code is still powerful enough to decode them. 

From Fig. 5 we see that the burstiness of the channel has a limited influence on the 

undetected error probalility, except in the range of average BERs 4 ~ 1 0 ~  I F 5 
In this range, and for a bursty channel, most of the errors are concentrated in the vec- 

tors received while the channel is noisy. The convolutional code is powerful enough 

to decode most of these noisy vectors reliably. On the other hand, if the channel is sta- 

tionary, the vectors which are received during the quiet state contain more errors, and 

there are more undetected errors than in the non-stationary case, because of the limited 

power of the block decoder. 

Fig. 6 shows the degradation in system reliability when the receiver buffer size is 

limited to five times the channel round trip delay ( B = I-d = 5d ). The degradation 

becomes obvious for average BERs in the range F2 4 ~ 1 0 - ~ .  For small I and high F, 

although most errors can be corrected within I retransmissions, a small percentage of 

error vectors cannot be corrected, and those error vectors will have a serious effect on 

the probability of undetected error. Obviously, as I becomes large, the system becomes 

more and more reliable. 

7. Discussion and Conclusions 

Wang and Lin proposed a hybrid ARQ scheme with parity retransmission using 

two block codes Co and C1 [17]. Co is an (n,k) high-rate error-detecting code and C1 

is a half-rate (2n,n) code which is designed for error correction only. However, C1 

must be invertible and an inverse operation is required at the decoder to recover the 
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' information data vector from the retransmitted parity check vector. In [17], the perfor- 

mance of hybrid ARQ schemes using both a :rate 1/2 invertible block code and a rate 

1/2 convolutional code were analyzed for a BSC. The results indicate that convolu- 

tional codes provide a higher throughput than block codes, especially on very noisy 

channels (BERs around loe2). However, sincc these results were obtained for a BSC, 

and since parity retransmission hybrid ARQ schemes are designed for use on non- 

stationary channels, a more detailed analysis was needed. In this paper, we have 

presented a thorough analysis of a parity retransmission hybrid ARQ scheme using 

convolutional codes for a non-stationary channel, assuming both infinite and finite 

receiver buffers. Results show that high thrcughput efficiencies and low undetected 

error probabilities can be maintained over a wide range of channel parameters and that 

the throughput efficiency improves as the channel becomes burstier in nature. In addi- 

tion, the undetected error probability performance is better for burstier channels. These 

results substantiate the claim that parity retransmission hybrid ARQ schemes using 

convolutional codes are particularly well suited for use on non-stationary channels. 

. 

Unlike block codes, "invertibility" is not required for convolutional codes in a 

hybrid ARQ scheme with parity retransmission. Therefore, convolutional codes with a 

variety of code rates can be incorporated int'o hybrid ARQ schemes. Hybrid ARQ 

schemes using rate 2/3 and 314 convolutional codes have been proposed and analyzed 

over non-stationary channels in [20]. The rate 213 and 3/4 schemes provide much 

better throughput than the rate 1/2 schemes i3t the cost of a more complex Viterbi 

decoder, a larger buffer, and a more complex buffer strategy. For instance, assuming 
the duty cycle of the noisy burst is p1 = 0.05., the average channel BER is €=  lo-*, 
and the memory order of the convolutional code is 3, the throughput is equal to 0.6 for 

the rate 1/2 scheme, 0.74 for the rate 2/3 scheme, and 0.8 for the rate 3/4 scheme [20]. 

These higher rate hybrid ARQ schemes are veiy attractive for use on high speed non- 

stationary channels, such as satellite communication channels. 
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Appendix A 

In this appendix we derive the transition probabilities of the Markov chain shown 

in Fig.3. 

Transition probability from state kj to state ji, pQJi 

Let d be the number of code vectors that can be transmitted during one channel 

round trip delay period. Since the retransnutted vector is received after one channel 

round trip delay , in the following calculations we need to know the channel d-step 

transition probabilities. The channel d-step transition probabilities pol(d) and pll(d) of 

being in state 1 d time frames after being in state 0 and state 1, respectively, are given 

by [251 

and 

(P’ - PId. 1 + p  -p ’  
P + - (1 - P’) 

P l l ( 4  = 1 + p  (A. 1.2) 

Let us consider the transition from state: 01 to state 10. State 01 means that two 

NSVs cl(x) and Q&x) , sent over channel states 0 and 1, respectively, have been 

received and that decoding has failed. pl(x) is then discarded and f2(x) is held in the 

receiver buffer. The transition from state 01 to state 10 means that a new NSV f3(x), 

sent over channel state 0 after a round trip delay, has been received with probability 

[ 1 - pll(d) ] PNO, and that convolutional decoding of the two NSVs, cz(x)  and ?3(x), 

has failed with probability PI@ The transition probability from state 01 to state 10 is 

therefore given by 

By a similar argument we obtain 
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Transition probability from state ij to state e, 

Consider the transition from state 01 to state e. In state 01, the decoding of the 

two NSVs gl(x) and 92(x) sent over channel states 0 and 1, respectively, has failed. 

cl(x) has been discarded and replaced by it retransmitted vector c3(x),  which was 

received one round trip delay after the reception of 92(x). The transition from state 01 

to state e means an undetected error is made in the syndrome check of P3(x) , or if 

c3(x)  is a NSV, in the decoding of c2(x) and c3(x). Note that c3(x) may be sent over 

channel state 0 or 1. Consider the case when the channel is in state 0. The probability 

of such an event is the d-step transition probability in the channel model from state 1 

to state 0, [ 1 - pll(d) 3. An undetected error is made when performing the syndrome 

check on P3(x) with probability Qo. If the syndrome check on v3(x) is nonzero (with 

probability PNo), another undetected error can be made in the convolutional decoding 

of ?2(x) and f3(x) with probability Qlo. The undetected error probability, given that 

c3(x)  is received while the channel is in state 0, is therefore 

. 

Similarly, the probability of making an undetected error, given that f 3 ( x )  is received 

when the channel is in state 1, is 

The transition probability from state 01 to state e is then obtained by averaging E,  and 

E1 : 

The transition probabilities from the three other states to state e are obtained similarly, 

and we have 
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Transition probability from state i j  to state c, pii,c 

Realizing that the transitions from state ij to states jk, e, and c are mutually 

exclusive and collectively exhaustive, the sum of the corresponding transition probabil- 

ities must add up to 1. Therefore . 
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Appendix B 

In this appendix we present some resu1.t~ concerning Markov chains which are 

used throughout the paper. 

First passage probability 

The n-step first passage probability, denoted by &(n), is defined as the probabil- 

ity that a Markov chain starting from state j will be in state b for the first time after n 

transitions. If b is an absorbing state, these probabilities can be found directly from the 

n-step transition probabilities as follows: 

To prove (B.l), we observe that the one-step first passage probability is the same 

as the one-step transition probability. For tx = 2, the two-step transition probability 

pjlb(2) contains the probability of visiting state b immediately after the first transition 

and remaining in state 6 during the second transition. Hence, the probability of this 

event, pj,b( l)pb b( l), should be subtracted from ~ ~ , ~ ( 2 )  to obtain the two-step first pas- 

sage probability, i.e., f i ,b (2 )  = pj,b(2) - pj,b(l )pb,b( 1). Since b is an absorbing state 

(Le., ~ ~ , ~ ( l )  = l), we havefj,b(2) =pj,b(2) - ~ ~ , ~ ( l ) .  The rest of (B.1) is based on simi- 

lar reasoning. 

Once the first passage probabilities have been determined, the following important 

quantities can be evaluated. 
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' 
Absorption probability and mean absorption time 

The 1-step absorption probability, denoted by Aj,b(L), is the probability that a Mar- 

kov chain initially in state j will be absorbed by absorbing state b within l transitions. 

It follows from (B.1) that 

The infinite-step absorption probability, denoted by Ailb, is the probability that a chain 

starting in statej will eventually be absorbed bly absorbing state b. Thus from (B.2), 

= Aj,b(oo) '= Pj,b(oo)* (B.3) 

Note that if the Markov chain contains only one absorbing state, A,,b = 1,  since the 

chain will eventually reach b and be trapped there. 

We denote the 1-step mean absorption time by Mi,&). It is defined as the mean 

time that a Markov chain starting in state j will be absorbed by absorbing state b 

within I transitions. From (B.l) we obtain 

I I 

?l=l n==2 
Mj,b(l) = fi,b(n) = Pj,b 4- bj,b(n> - Pj,b(n-1)1. 

The infinite-step mean absorption time, denoted Mj,b7 is then 

Mj,b is the mean period of time after the chain leaves state j until it is eventually 

absorbed by state b. 

Let S be the set of absorbing states in a Markov chain. Define the 1-step chain 

mean absorption time as 

and the infinite-step chain mean absorption time as 

Obviously, M,(l) is the mean time of absorption within 1-transitions if the chain starts 

from a given initial state j ,  and Mi is the mean time required for a Markov chain to be 
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eventually absorbed if it starts in statej. 

Easy ways of finding and Mj 

Because the calculations of Aj,b and Mj involve the infinite-step transition proba- 

bility, pj,J-), direct evaluation of A,,b and h$ from (B.3) and 03.7) become impracti- 

cal. However, they can be determined in alternative ways. Let N be the number of 
states in the chain. The Aj,,'s are related by the following set of equations [27]: 

Note that, when the initial state is b, it is already absorbed in b, and hence Ab,b = 1, 

whereas when the initial state is some 'other absorbing state, say a, then it will never 

be absorbed by b, and hence = 0. For all other initial states, a set of simultaneous 

equations may be written from (B.8) whose solution is A,,b. 

The infinite-step chain mean absorption times, Mi, can be determined by solving 

the following set of equations [27]: 

N 

i=l 
Mj = 1 + C Mi p,,i for all j C S. (B.9) 

Observe that if state i is an absorbing state, the chain is already in an absorbing state, 

and Mi = 0. 
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Fig. 1 A two-state Markov chain non-stationary 
channel model. 
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Fig. 3 Receiver’s decoding status after receiving an initial NSV. 
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Fig. 4 Throughput performance of rate 1!2 selective-repeat 
ARQ with infinite receiver buffer. 
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Fig. 5 Probability of undetected error of rate 1/2 selective- 
repeat ARQ with infinite receiver buffer. 
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